Energy-autonomous wireless sensor nodes for automotive applications, powered by thermoelectric energy harvesting

نویسندگان

  • Hironao Okada
  • Takeshi Kobayashi
  • Takashi Masuda
  • P. Mehne
چکیده

In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System

Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realization...

متن کامل

Power Management Electronics for Thermoelectric Energy Harvesting Systems

The presented paper gives an overview of basic principles and recent trends in power management electronics for thermoelectric energy harvesting. Energy harvesting systems are a modern way how to feed the autonomous devices on-site using ambient energy. The ambient energy in the case of thermoelectric generators is represented by temperature gradients. Different temperatures are applied to the ...

متن کامل

Game Theory based Energy Efficient Hybrid MAC Protocol for Lifetime Enhancement of Wireless Sensor Network

Wireless Sensor Networks (WSNs) comprising of tiny, power-constrained nodes are getting very popular due to their potential uses in wide applications like monitoring of environmental conditions, various military and civilian applications. The critical issue in the node is energy consumption since it is operated using battery, therefore its lifetime should be maximized for effective utilization ...

متن کامل

Geographic and Clustering Routing for Energy Saving in Wireless Sensor Network with Pair of Node Groups

Recently, wireless sensor network (WSN) is the popular scope of research. It uses too many applications such as military and non-military. WSN is a base of the Internet of Things (IoT), pervasive computing. It consists of many nodes which are deployed in a specific filed for sense and forward data to the destination node. Routing in WSN is a very important issue because of the limitation of the...

متن کامل

An Empirical Study of Harvesting-Aware Duty Cycling in Sustainable Wireless Sensor Networks

In sustainable wireless sensor networks powered by ambient energy harvesting, node operation highly depends on the energy availability and harvesting rate. For them to support existing wireless sensor network applications, duty-cycling schemes need to adapt the nodes’ sleep-wake schedules according to energy harvesting and consumption rates. In this paper, we propose a harvesting-aware duty-cyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016